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Abstract

Attractors play a key role in a wide range of processes including learning and memory.
Due to recent innovations in recording methods, there is increasing evidence for the
existence of attractor dynamics in the brain. Yet, our understanding of how these
attractors emerge or disappear in a biological system is lacking.

By following the spontaneous network bursts of cultured cortical networks, we are
able to define a vocabulary of spatiotemporal patterns and show that they function as
discrete attractors in the network dynamics. We show that electrically stimulating
specific attractors eliminates them from the spontaneous vocabulary, while they are still
robustly evoked by the electrical stimulation. This seemingly paradoxical finding can be
explained by a Hebbian-like strengthening of specific pathways into the attractors, at
the expense of weakening non-evoked pathways into the same attractors. We verify this
hypothesis and provide a mechanistic explanation for the underlying changes supporting
this effect.

Author summary

There are many hints that could evoke the same memory. There are many chains of
evidence that could lead to the same decision. The mathematical object describing such
dynamics is called an attractor, and is believed to be the neural basis for many
cognitive phenomena. In this study, we aimed to deepen our understanding of the
existence and plasticity of attractors in the dynamics of a biological neural network. We
explored the spontaneous activity of cultured neural networks and identified a set of
patterns that function as discrete attractors in the network dynamics. To understand
how these attractors evolve, we stimulated the network to repeatedly visit some of them.
Surprisingly, we observed that the stimulated patterns became less common in the
spontaneous activity, while still being reliably evoked by the stimulation. This
paradoxical finding was explained by the strengthening of specific pathways leading to
these attractors, alongside the weakening of other pathways. These findings provide
valuable insights into the mechanisms underlying attractor plasticity in biological neural
networks.
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Introduction 1

Attractors are important elements in many cognitive processes such as memory 2

formation and decision-making. These attractors are considered to arise from the 3

dynamics of neuronal networks in the brain, which allow for the emergence of stable 4

states that can persist over time. For instance, head-direction circuits need to integrate 5

body motion over time, consistent with continuous attractor dynamics (1; 2). Working 6

memory of discrete (3) or continuous (4) information was hypothesized to be supported 7

by attractors (5). Decision-making can be interpreted as convergence to a discrete set of 8

attractors (6), and many other examples exist (7). Nevertheless, despite their key role 9

in brain function, the mechanisms underlying the generation of such attractors and their 10

evolution over time remain largely unknown. 11

To address this challenge, we focus on the relationship between spontaneous and 12

evoked activity (8). Attractors, as the name implies, attract neural activity from nearby 13

starting points into a common trajectory. This set of initial conditions is known as a 14

basin of attraction. If attractor dynamics are relevant for behavior, one would expect 15

external stimuli to lead neural activity into one of these basins. Similarly, it is 16

reasonable to expect spontaneous activity to occasionally land into one of the basins, 17

and hence result in the activation of attractors. In line with these expectations, there 18

have been reports of spontaneous reactivations that are similar to evoked activity 19

(9; 10; 11). 20

We studied this question in a more controlled setting – using in-vitro cultured 21

cortical neurons. These networks can sustain both spontaneous (12) and evoked (13) 22

activity, and allow continuous monitoring over many hours. Furthermore, it was shown 23

that structured stimulation can lead to learning in such networks (14). 24

In this paper, we show that the spontaneous activity of in-vitro cortical networks 25

contains a vocabulary of spatiotemporal patterns that act as discrete transient 26

attractors. Discreteness is manifested by the finite number of such patterns that repeat 27

over time. We show that nearby initial conditions lead to the same pattern, consistent 28

with basins of attraction. These attractors are transient, as these network bursts are of 29

limited duration, and the network relaxes to a quiescent state following each burst. 30

Furthermore, we demonstrate that specific localized stimulation can generate robust 31

evoked responses from this vocabulary of attractors. We also show that prolonged 32

stimulation of these specific attractors leads to their elimination from the spontaneous 33

vocabulary, while still being robustly evoked by the stimulation. 34

This work provides the first direct evidence for the plasticity of multiple attractors 35

in a biological neural network. In addition, the plasticity principles described in the 36

paper improve our understanding of how attractors in a biological system evolve. This 37

study sheds light on the mechanisms underlying attractor dynamics in the brain and 38

offers a new perspective on how they can be manipulated. 39

Results 40

To study attractor dynamics, we use extracellular recordings of mature networks of 41

cultured cortical neurons (18-21 DIV, see methods). Electrical activity is recorded from 42

an array of 120 electrodes on which the neurons are plated (Fig 1A). Throughout the 43

following sections, we will demonstrate the results using one example experiment, and 44

show statistics across all experiments. Further details regarding all experiments are in 45

the methods section. 46
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Spontaneous vocabulary as attractor dynamics 47

One of the main characteristics of the activity of cultured neuronal networks is the 48

presence of spontaneous synchronized bursts, in which a large fraction of the neurons 49

fire almost simultaneously within a few hundred milliseconds (Fig 1B). We follow the 50

spontaneous activity of matured cultured cortical neuronal networks, focusing on these 51

bursting events. We define these events based on the overall activity across all 52

electrodes, beginning with a threshold-crossing, and ending 100 msec later. A burst can 53

be described as a spatiotemporal pattern in the high-dimensional space of the neural 54

activity (Fig 1B, heat-map). For visualization purposes, we also project these events to 55

a natural two-dimensional space (Fig 1A) – the physical location of the activity’s center 56

of mass (Fig 1B, rightmost plot). We noticed that each network has its own repertoire 57

of such spatiotemporal patterns – a finite set of network bursts that repeat many times 58

spontaneously (Fig 2C). 59

Fig 1. Burst extraction. (A) Electrodes layout in the MEA (10x12, 120 in total).
See methods for more details. (B) The activity of all electrodes (bottom-left) is
summed into a time series (top-left). A threshold is used to define a burst. For each
burst, we bin and smooth the data to get a continuous time series for each of the
electrodes (heatmap, see methods). For visualization only we use the center of mass
representation (rightmost plot, circle denotes initial state. See methods).

Looking more closely at these bursts reveals attractor-like dynamics: Similar initial 60

states lead to similar bursts. Specifically, we define the initial condition of a burst as 61

the spatial activity pattern at the moment of threshold crossing. Examining all burst 62

pairs allows us to look at the joint distribution of the similarity of initial conditions and 63

the similarity of the overall burst patterns. We find that this distribution is bimodal, 64

allowing us to define a threshold on the similarity of initial conditions that will lead to 65

similar overall bursts (Fig 2A, note that θ is a network-specific threshold). Conversely, 66

we see that most pairs of bursts are dissimilar – indicating the presence of more than 67

one attractor. Further support to the attractor dynamics is given by the convergence of 68

trajectories over time. If we consider all pairs of highly-correlated trajectories (above θ) 69

and compute their instantaneous correlation, we see that the variability between them 70

decreases over time (Fig 2B). We conclude that bursts can be described as distinct 71

attractors, each with its basin of attraction. 72

Note that attractors in dynamical systems describe areas of phase space to which 73

activity converges, and does not leave. In contrast, the bursts we describe are transient 74

events. Nevertheless, we can think of them as attractors of the dynamical system before 75

burst initiation. Once the burst is established, the dynamics change (probably due to 76

adaptation), and the attractor destabilizes. Alternatively, one can consider a single 77

global attractor – the quiescent state. The basin of attraction, however, is highly 78

structured. Each of the bursts is a specific pathway within this basin, that is separated 79

from the others. We are interested in the attraction phase of these dynamics, and not in 80

the relaxation from them, and will thus refer to these events as discrete transient 81

attractors. 82
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The correlation measure used here is one way out of many possibilities to 83

characterize similarities between bursts. We use this measure and two others (See Fig 9 84

in methods) to construct a graph whose edges characterize similarity between pairs of 85

bursts. We then use spectral clustering methods to create a vocabulary of 86

spatiotemporal patterns, which act as attractors in the network dynamics. The resulting 87

patterns for one network are shown as center-of-mass trajectories (Fig 2C). These 88

two-dimensional projections do not capture the full phase space of neural activity. To 89

provide another view of neural activity, we use a non-linear dimensionality reduction 90

method (UMAP) to visualize all network bursts in a single projection (Fig 2D). This 91

visualization emphasizes the existence of distinct pathways in the network dynamics, 92

each corresponding to a cluster from the network vocabulary. 93

Fig 2. Attractor dynamics. (A) Similar initial states of bursts lead to similar bursts
(white arrow). For every pair of bursts, we measure the correlation between their initial
states and the overall spatiotemporal correlation between the full bursts. White dashed
lines denote the thresholds used for clustering. θ is the 2D correlation threshold used as
a similarity threshold between bursts. Initial states are defined as the first 5msec of a
burst, after the threshold crossing. (B) Dynamics of convergence. For every pair of
similar bursts (spatiotemporal correlation ¿θ), we measure the spatial correlation at
every point in time. The black line denotes the mean and the grey shade represents the
standard deviation (not SEM). Note the diminishing variability with time, indicating
convergence from variable initial states. (C) Dynamics-based clustering (see methods).
In this example, the vocabulary contains 9 main clusters, explaining about 85% of the
spontaneous bursts. Each subtitle contains the number of bursts (events) in each cluster
and the percentage out of all spontaneous bursts. Each center of mass trajectory is a
single burst, the circles denote the initial state of each burst. (D) UMAP embedding
representing all the 1017 spontaneous bursts recorded during 4 hours of activity.
Contour denote the density of neural states. The black trajectories represent the
median trajectory of each cluster in the spontaneous vocabulary.

Evoked responses 94

We showed the existence of attractors using spontaneous activity. The motivation to 95

study attractors, however, stems from evoked activity. Attractors have been suggested 96

to support memory of stimuli, to maintain a decision until it is carried out, or to 97

support other computations related to evoked activity. Previous studies in-vivo showed 98

conflicting accounts on the relationship between spontaneous and evoked activity 99

(10; 11). We explored this question in our controlled settings. Namely, we asked 100

whether spontaneous and evoked activity reside in the same dynamical landscape. 101

To this end, we divided the MEA into 20 stimulation sites: sets of 6 adjacent 102
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electrodes (with no overlap) that span the entire 2D space (Fig 3A). We then injected a 103

voltage stimulation via these 6 electrodes simultaneously, for all the 20 sites, one after 104

the other, with a 10 seconds delay. We repeated this sequence of 20 stimuli for 30 cycles 105

and analyzed all the resulting evoked responses. 106

Some of the stimulation sites generated a robust response (site 17, Fig 3B, bottom), 107

while other sites did not (site 10, top). In order to quantify the robustness of a response 108

to each site we calculated the pairwise 2D correlations between all its responses (Fig 109

3C). In the case of a robust response, we can ask whether it is part of the spontaneous 110

vocabulary of the network or whether it represents an entirely different dynamics. For 111

the robust response of site 17 shown in Fig 3B, we see that the correlation within 112

different repetitions of the evoked response is as strong as the correlation between the 113

evoked responses and one of the spontaneous attractors (cluster 5, Fig 3D). We can 114

quantify the similarity between evoked and spontaneous activity by counting the number 115

of spontaneous clusters required to explain most of the evoked repetitions from a given 116

site (Fig 3E). If this number is small, it suggests that the external stimulus brought the 117

network into the basin of attraction of a few clusters. Overall, we see that robust 118

responses are mostly taken from the spontaneous vocabulary of the network (Fig 4). 119

It is important to note that comparing evoked responses to spontaneous bursts is not 120

trivial. The signal recorded from the stimulating electrodes in the evoked responses is 121

about an order of magnitude higher than all other electrodes. Therefore, when 122

comparing a given evoked response to a spontaneous burst we exclude all 6 stimulating 123

electrodes and only then calculate the correlation. 124
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Fig 3. Evoked responses. (A) Electrode arrangement in the MEA (120 in total).
Each stimulation site consists of 6 adjacent electrodes (black frame). There are 20 such
stimulation sites with no overlapping electrodes. The set of 6 electrodes colored in green
represents stimulation site number 17, and the set in yellow refers to site number 10.
Probe stimulation: We stimulated all sites, one after the other, 30 times each. The time
between stimuli is 10 seconds. This lasts 1.75 hours in total. (B) Visualization of the
evoked responses to sites 10 and 17: center of mass representation for all of the 30
responses to each of these sites. The red dots denote the stimulating electrodes in each
case. (C) Robustness: Pair-wise correlation values within each of the 2 sites. It is clear
that the network response to stimulation at site 17 is much more robust and coherent
compared to 10. (D) Existence: Comparing the evoked responses to the spontaneous
vocabulary. Here we show the pair-wise correlation values within cluster 5 in the
spontaneous activity and the pair-wise correlation values between the evoked responses
to site 17 and the spontaneous bursts in cluster 5. They overlap almost completely,
meaning that the evoked responses to 17 are indeed part of the spontaneous vocabulary
of the network. (E) Existence in terms of spontaneous vocabulary: Which spontaneous
clusters explain the 30 evoked responses for each of the 2 sites? In the case of site 10 –
there is no specific cluster, also – a large part of the responses is not explained by any of
the clusters. In the case of 17, cluster number 5 explains all of the evoked responses.
The grey frame shows center of mass trajectories of the evoked responses to 17 (green)
together with the spontaneous bursts in cluster 5 (grey).
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Fig 4. Existence as a function of robustness The x-axis denotes the median
pair-wise correlation values for each probe response. The y-axis represents a measure for
existence in the spontaneous vocabulary: the number of clusters are required to explain
50% of the responses. Small random noise is added to the number of clusters to aid in
visualization. This plot shows data from 16 different experiments (see methods for more
details). In general, the more robust the response is fewer clusters are required to
explain it. Red circles denote the ones used for stimulation. The responses in the green
area are used for further analysis.

In other words, the stimulation sites which generated a robust response can be used 125

as switches to control the dynamics of the network – we can now ”force” the network to 126

visit specific areas in the dynamical space. This raises the following questions: What 127

will happen to the network’s evoked response to this stimulation? What will happen to 128

the spontaneous dynamics? Will the spontaneous vocabulary change? What will 129

happen to the stimulated attractors in comparison to the non-stimulated ones? 130

Strengthening and weakening specific pathways 131

In order to answer these questions we use the following protocol: We record the 132

spontaneous activity of the network for four hours (during which the dynamics is 133

stable), then we probe the network via 20 stimulation sites (Fig 3A). We then pick 3 134

stimulation sites to which the network responded in the most robust way and stimulate 135

via those 3 sites for 10 hours (Fig 5). Finally, we record the spontaneous activity of the 136

network again for an additional four hours. 137
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Fig 5. Experiment protocol. Each experiment starts with a 4-hour recording of
spontaneous activity. We then probe the system in 20 different stimulation sites, one
after the other, and analyze the evoked responses to each of the 20 sites. We choose the
3 stimulation sites which generated the most robust and distinct evoked responses and
start a 10-hour stimulation period in which we alternate between stimulating these 3
sites and recording spontaneous activity (see inset). Following the 10-hour stimulation,
we record the spontaneous activity for another 4 hours. Control experiments in which
the 10-hour stimulation period had no stimulation but only spontaneous activity
recordings, were also done.

We expected this protocol to strengthen the relevant attractors, in a Hebbian 138

manner. Namely, the evoked responses will be more robust, and the corresponding 139

spontaneous patterns will be more present in the spontaneous activity. Surprisingly, we 140

observed two opposite effects: the spontaneous activity linked to stimulation weakened, 141

while the evoked responses did become more robust. 142

To quantify the changes in the spontaneous vocabulary, we asked whether the 143

stimulated patterns that were part of the spontaneous vocabulary before stimulation are 144

still present afterwards. For instance, we can correlate the evoked responses to site 17 145

mentioned above (Fig 3E) to all 1017 spontaneous events that occurred before 146

stimulation. The histogram in Fig 6A (blue) shows a large peak in high correlation 147

values, consistent with the fact that this pattern is part of the vocabulary. Repeating the 148

same analysis, but this time comparing to the 2092 spontaneous events from the period 149

after the stimulation, results in a very different distribution (Fig 6A, purple). We can 150

see that the stimulated attractor almost disappeared from the spontaneous vocabulary. 151

We quantified the changes in the existence of patterns using the cumulative 152

probability distribution, exemplified in Fig 6B for the two distributions mentioned 153

above. Intuitively, we care about changes in high values of correlation – as these 154

indicate spontaneous events that are similar to the pattern of interest. The actual 155

correlation values differ between networks, which is why we use a network-specific 156

threshold as reference (θ, See Fig 2A). Using this threshold, we can calculate the change 157

in the existence of high-correlation patterns – ∆CDF (θ) (Fig 6B). 158

Is this change due to our stimulation or simply a result of drift over time? We 159

repeated this analysis for 11 networks with stimulated patterns, and for 5 networks 160

without stimulation. Importantly, for these 5 control networks, we also chose 3 robust 161

patterns but simply did not stimulate them. There is some arbitrariness in our 162

definition of the threshold θ, and we therefore scanned a short range of values relative 163

to this threshold ∆CDF (αθ) (Fig 6C). We see that the stimulated patterns tend to 164

disappear from the spontaneous vocabulary after stimulation (∆CDF is negative), 165

while the mean effect in the control experiments is roughly zero (Fig 6C). 166

The difference shown in Fig 6C could stem from two different effects – a larger drift 167

in the spontaneous activity due to stimulation of the network, and a specific drift of the 168

stimulated vs. the non-stimulated patterns within the stimulated networks. To 169

dissociate the two, we now only considered the stimulated networks. For each network, 170

we chose the clusters that were robustly evoked by stimulation (Fig 4, see methods) and 171
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calculated ∆CDF (αθ). We additionally chose the same number of non-stimulated 172

clusters (see methods) for each network and repeated the same analysis. Networks are 173

expected to differ not only in their correlation threshold, but also in their baseline drift 174

rates. We therefore z-scored the ∆CDF values within each network before combining 175

them across networks (Fig 6D). We can see that ∆CDF is negative, indicating an 176

overall drift. For correlated patterns (α > 0.9), we also see a trend towards larger drift 177

in the stimulated clusters (p = 0.08 for α = 1). 178

Fig 6. Changes in spontaneous activity. (A) 2D correlation values between all
spontaneous events and the evoked responses to site 17, before (blue, high correlations)
and after (purple, low correlations). (B) CDFs of the 2 distributions shown in (A). We
quantify the effect by calculating the difference at αθ, were θ is the similarity threshold
of the network and α is a value in the range [0.71.1]. (C) Existence of effect –
stimulation vs. control. Statistics across 11 stimulation experiments and 5 control
experiments. The violins represent ∆CDF (αθ) values in stimulation experiments (red)
and in control experiments (green) for a range of α values (the fraction of θ at which
∆CDF was calculated). The numbers above each pair of violins represent the p-value of
the hypothesis that the effect in the stimulation experiments is larger than in the
control experiments. In the grey area ∆CDF was zero for some of the data points (the
CDFs reached 1 for both before and after). (D) Specificity of the effect – measuring the
effect in the spontaneous vocabulary. The violins represent the ∆CDF values for the
stimulated clusters (red) and for the non-stimulated clusters (green). The numbers
above each pair of violins represent the p-value of the hypothesis that the effect in the
stimulated clusters is larger than in the non-stimulated clusters.

One simple possible explanation for this effect is that the stimulated pathways were 179

”damaged” such that the network is no longer able to generate these patterns. 180

Analyzing the evoked responses, however, shows the opposite is true. Throughout the 181

10-hour stimulation, not only that the network continues to generate these evoked 182

responses, but they also get more robust with time. This can be visually appreciated by 183
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looking at the center-of-mass projections of one evoked response (site 17, Fig 7A), in 184

which later responses are more tightly concentrated in space. We quantify this effect by 185

measuring the variance between events across all networks (Fig 7B-C). In other words, 186

these stimulated pathways remained accessible via stimulation but almost unreachable 187

spontaneously. One can say that there is now a new association between the stimulated 188

patterns and the specific stimulation that generates them. 189

Fig 7. Evoked responses become more robust. (A) Center of mass trajectories of
the responses to site 17 throughout stimulation (color: 0 (green) to 10 (yellow) hours).
The 6 red dots denote the stimulating electrodes. (B) Variability between the responses
in (A) throughout the 10-hour stimulation period. The variance is calculated in windows
of 30 minutes throughout stimulation. In each window, we measure the deviation from
the window’s mean response (Euclidean distance). The plot is normalized by the
variance at the first window. (C) Mean and variance of the variability between the
responses for each stimulation site (statistics across all 11 experiments).

Mechanism 190

These effects raise many interesting questions – What causes this phenomenon? What is 191

the mechanism behind these vocabulary changes? How do the background dynamics 192

change to support such changes? 193

We imagine these two effects in the following way: Each network has a set of 194

multiple discrete attractors that can be reached spontaneously, while some of them can 195

also be reached through electrical stimulation. We show that throughout stimulation, 196

the evoked responses become more robust with time – consistent with the basin of 197

attraction becoming steeper on one side. On the other hand, the same attractors 198

become much less accessible spontaneously – consistent with another side of the basin 199

becoming flatter. One can imagine digging in the energy landscape and piling the dirt 200

onto the other side. 201

In order to verify this hypothesis, we need to map the basin of attraction before and 202

after stimulation. We do this via the set of initial states of bursts. Specifically, we ask 203

whether the same set of initial states will lead to the same set of bursts. We define such 204

a candidate set by considering the initial states of one of the stimulated clusters (see 205

methods). We can now follow all the bursts that originate from this area. Before 206

stimulation, these bursts are similar to one another (the peak at large correlation values 207

in Fig 8A left, blue). After the stimulation, however, the bursts originating from the 208

same area are much more variable (Fig 8A left, purple). To quantify this difference, we 209

once again calculate ∆CDF (αθ) as shown in Fig 6B. Repeating the analysis on initial 210

states stemming from a non-stimulated cluster shows a smaller effect (Fig 8A, right). 211

We pool the data from all networks using z-scores of this value, showing a trend for the 212

stimulated patterns to be more disrupted (Fig 8B). 213

We can visualize the change in the dynamics by looking at all the bursts associated 214

with a single cluster – evoked and spontaneous, before and after the stimulation. Using 215

nonlinear dimensionality reduction, we can see that for the non-stimulated patterns (Fig 216
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8C right, green frame), similar initial conditions lead to similar bursts. For the 217

stimulated cluster (left, red frame), however, this is only true before stimulation (narrow 218

distribution of blue trajectories), and not after (purple trajectories). 219

Fig 8. Mechanistic explanation. (A) The probability distribution of the
spatiotemporal correlations between pairs of events with initial states similar to the
ones of the stimulated patterns (red frame) and not similar to the stimulated patterns
(green frame), before stimulation (blue), and after (purple). The difference between the
two is measured by ∆CDF (αθ) as shown in Fig 6B. (B) Statistics across 11
stimulation experiments and 5 control experiments. The violins represent ∆CDF (αθ)
values in stimulation clusters (red) and in non-stimulated clusters (green) for a range of
α values (the fraction of θ at which ∆CDF was calculated). The numbers above each
pair of violins represent the p-value of the hypothesis that the effect in the stimulation
clusters is larger than in the non-stimulated clusters. (C) Trajectories in a non-linearly
reduced 2D space (using UMAP) of one stimulated cluster (left, red frame) and one
non-stimulated cluster (right, green frame), before (blue) and after (purple) stimulation.
The dashed circles denote the area of initial states for each cluster.

Discussion 220

In this work, we analyzed the spontaneous activity of cultured neural networks. We 221

showed that each such network has a finite repertoire of bursts that function as discrete 222

attractors. Based on these dynamics, we were able to create a vocabulary of 223

spatiotemporal patterns that describe the spontaneous dynamical space of the network. 224

We showed that these attractors are accessible not only spontaneously, but also using 225

electrical stimulation – we were able to find stimulation sites that generated robust and 226

coherent evoked responses similar to the ones in the spontaneous vocabulary. 227

In order to answer questions regarding the plasticity of the vocabulary, we used 228

electrical stimulation to force the network’s dynamics to visit specific attractors 229

repeatedly. We find that the targeted attractors are eliminated from the spontaneous 230

vocabulary, while they are robustly evoked by the electrical stimulation. This seemingly 231

paradoxical finding can be explained by a Hebbian-like strengthening of specific 232
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pathways into the attractors, at the expense of weakening non-evoked pathways into the 233

same attractors. 234

Synchronized bursts are routinely observed in neural cultures and have been 235

suggested to be a barrier to plasticity (15). Therefore, several attempts have been made 236

to suppress them in order to allow plasticity (16; 17). Our work suggests that these 237

synchronized bursts can also be informative, and serve as objects that advance the 238

study of plasticity. In this work, we learned the network’s dynamical structure and used 239

it as a tool to shape the dynamics in specific directions. This is similar to the concept of 240

learning within the ”intrinsic manifold” presented in (18) which suggests that working 241

within the constraints imposed by the underlying neural circuitry can make the learning 242

process significantly easier and more accessible. 243

To our knowledge, this work provides the first direct evidence for the plasticity of 244

multiple attractors in a biological neural network. The plasticity principles we describe 245

improve our understanding of how attractors in a biological system evolve. 246

Methods and Materials 247

Cell culture 248

Cortical neurons were obtained from newborn rats within 24h after birth as described in 249

(19). The neurons were plated directly onto multielectrode arrays (MEAs) and allowed 250

to develop mature networks over a time period of 18-21 days. The number of neurons in 251

a typical network is in the order of 106. The preparations were bathed in Minimal 252

Essential Medium (MEM) supplemented with NuSerum (10%), L-Glutamine (2mM), 253

glucose (20mM), and insulin (25mg/l), and maintained in an atmosphere of 37°C, 5% 254

CO2 and 95% air in an incubator. Starting a week after preparation, half of the 255

medium was replaced every 2 days with a fresh medium similar to the one described 256

above excluding the NuSerum and with lower concentrations of L-Glutamine (0.5mM) 257

and 2% B-27 supplement. 258

During recordings and stimulation, the cultures were removed from the incubator, 259

but still maintained in an atmosphere of 37°C, 5% CO2, and 95% air. The dish was 260

perfused at a constant ultra-slow rate of 2.5 ml/day by a custom-built perfusion system. 261

Experimental system 262

Network activity was recorded and stimulated through a commercial 120-channel 263

headstage (MEA2100, MCS). The 120 30µm diameter electrodes are arranged in a 12x10 264

array, spaced 1mm vertically and 1.5mm horizontally. Data acquisition was performed 265

using Multi Channel Suite. All data were stored as threshold crossing events, with the 266

threshold set to 5σ, where σ is the standard deviation of the entire voltage trace. 267

Stimulation profile: As described in the text, 6 electrodes were selected for 268

stimulation at each stimulation time. Biphasic voltage pulses of +− 700mV lasting 269

400µsec, 200µsec for each phase were activated through all 6 electrodes simultaneously. 270

Data processing 271

Threshold crossings yield discrete time stamps of events from 120 extra-cellular 272

electrodes. We smooth (using a Gaussian kernel, σ = 2e− 2) and bin the data (bin size 273

is 5msec) to get 120 continuous time series. 274

In order to avoid stimulation artifacts, we exclude the data from the stimulating 275

electrodes when we analyze evoked responses. In addition, we ignore the first 5msec 276

after stimulation offset from all electrodes. 277
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Burst extraction 278

For each network, before and after stimulation, we detected all spontaneous bursting 279

events using threshold crossing with the threshold set to 4σ, where σ is the standard 280

deviation of the overall activity before and after stimulation respectively. We defined 281

the starting and ending points of each such event as the crossing of the low threshold of 282

0.5σ. The typical duration of these spontaneous bursting events is 100 to 300 msec. In 283

our analyses, we focus specifically on the first 100 msec of these events, as this 284

time-frame tends to exhibit the greatest variability among them. 285

Clustering method 286

There are many possible metrics for comparing the spatiotemporal activity patterns. 287

When clustering the spontaneous activity, we relied on the observation that similar 288

initial conditions lead to similar patterns (bimodal distribution in Fig 2A). To capture 289

different aspects of the patterns, we used 3 different metrics to measure the similarity 290

between bursts. In each case, we consider two bursts A,B ∈ RN×T , where N = 120 and 291

T = 20 (100msec). 292

1. Spatiotemporal correlation 293

The correlation coefficient between 2 bursts in the following way: 294

corr2(A,B) =
ΣtΣn(Atn − Ā)(Btn − B̄)√

(ΣtΣn(Atn − Ā)2)(ΣtΣn(Btn − B̄)2)

2. Euclidean distance between the center of mass of trajectories 295

We compute the center of mass (COM) of a burst as a weighted average of the 296

activity from all 120 electrodes. Namely, each electrode n has coordinates xn ∈ R2
297

on the MEA. The 2D trajectory of the center of mass of pattern A, denoted 298

COMAt ∈ R2xT is then: 299

COMAt =
∑
n

xiAtn

The Euclidean distance between 2 such trajectories is computed as the norm of 300

the difference between the two across time: Σt|COMAt − COMBt|. 301

3. Correlation of spatial profiles 302

The identity of the active electrodes is used to define this metric. The spatial 303

profile of a burst Atn is defined as SPAt = ΣtA. The correlation coefficient 304

between SPAt and SPBt is used. 305

The actual values for these 3 metrics vary between networks. In order to obtain 306

measures that are more invariant, we rely on the bimodal distributions of the initial 307

state and the full burst similarity shown in Fig 2A, but now extended to all three 308

metrics in Fig 9A-C. For each network and each metric, we defined two thresholds 309

(shown in dashed white lines) in order to distinguish between pairs of bursts that 310

converge to the same attractor (close initial states and similar bursts) and pairs of 311

bursts that converge to different attractors. Based on this distinction we can build a 312

graph for each of the three metrics: each node is a burst; two nodes are connected if 313

they cross both the initial condition threshold and the metric threshold. Then, we can 314

sum these 3 non-directed graphs into a single graph with edges valued 0− 3 (Fig 9D) 315

and perform spectral clustering (with the normalized symmetric Laplacian matrix, and 316

k-medoids as the clustering method). We only consider clusters that capture at least 2% 317
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of spontaneous events, which accounts for the vast majority of events (see tables 1 and 318

2, ”percent explained”). 319

Fig 9. Dynamics-based clustering. (A) For each pair of spontaneous bursts we
compute the Spatiotemporal correlation (2D corr) value and the correlation between the
initial states, then we plot the probability density of the values of the first as a function
of the second. The dashed white lines represent the thresholds that define the pairs of
bursts that converge to the same attractor (right upper square). (B) Same as in A,
using the COM distance metric. (C) Same as in A, using the spatiotemporal profile
metric. (D) Connectivity graph representing the similarity between the spontaneous
events, based on the three metrics bi-modal density.

Stimulated and non-stimulated clusters 320

In our analysis we define for each network a set of clusters that are similar to the 321

stimulated patterns (”stimulated clusters”) and a set of non-stimulated clusters. The 322

definition of these two sets relies on the analysis shown in Fig 4. For each stimulated 323

pattern in the green area, we defined a stimulated cluster as the one which explained 324

most of the evoked responses to a given stimulation site. The non-stimulated clusters 325

were all the clusters that explained none of the evoked responses to all 3 stimulation 326

sites. 327

Comparing between evoked and spontaneous bursts 328

The comparison shown in Fig 6C was based on the probe evoked responses to the 3 329

stimulated patterns. As written in the main text, when comparing evoked responses to 330

spontaneous activity, we exclude all 6 stimulated electrodes and then calculate the 331

spatiotemporal correlation. The comparison shown in Fig 6D aimed to check whether 332

the effect in C is specific to the stimulated patterns, and therefore was based solely on 333

the spontaneous activity (stimulated and non-stimulated clusters, as described above). 334

Here, we include all 120 electrodes. 335

Statistics over networks 336

Our data set consists of 11 stimulation experiments (table 1) and 5 control experiments 337

(in which there was no stimulation during the 10 hours; table 2). The tables summarize 338

some of the activity characteristics of each culture: MEA serial number, cell preparation 339

date, number of spontaneous events (before and after stimulation), number of clusters 340

(dictionary size; before and after stimulation), the percentage of spontaneous events that 341

are part of the dictionary (this is because clusters smaller than 2% are discarded) before 342

and after stimulation), and number of stimulated patterns (out of the selected 3) that 343

are indeed part of the spontaneous vocabulary (according to the criterion in Fig 4). 344
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Before stimulation After stimulation

MEA # Prep date
Age
(DIV)

Events
/hour

# of
clusters

%
Explained

Stimulated
existence
(out of 3)

Events
/hour

# of
clusters

%
Explained

26550 1.11 19 260 9 85 3 530 8 83
26549 8.11 20 292 14 98 1 651 11 97
38428 17.11 18 274 18 95 1 686 20 85
38427 1.11 20 694 13 87 2 739 14 92
26532 2.3 20 497 16 89 1 463 16 87
26550 3.5 19 617 17 93 1 563 18 89
38426 2.11 19 691 14 90 1 688 19 92
26549 11.11 19 679 7 66 1 605 8 98
26550 15.11 20 626 18 97 2 647 10 95
N/A 8.11 21 548 12 89 2 607 7 88
38428 20.2 21 301 7 96 3 392 8 94

Table 1. Stimulation experiments.

Before stimulation After stimulation

MEA # Prep date
Age
(DIV)

Events
/hour

# of
clusters

%
Explained

Stimulated
existence
(out of 3)

Events
/hour

# of
clusters

%
Explained

26550 24.1 21 553 11 81 3 664 8 71
39740 24.4 18 609 17 88 1 659 10 79
38427 24.4 21 632 18 97 3 600 16 85
26536 7.2 20 234 15 94 3 453 17 83
38427 7.2 21 566 9 84 2 631 17 88

Table 2. Control experiments.

Success rate & probe as a criterion to proceed 345

The total number of cell preparations done in this study is about 100. A large number 346

of them did not develop well enough (due to contamination events, low density of cells, 347

and other reasons related to the maintenance atmosphere) and therefore were cleaned at 348

early ages. The ones that matured successfully were transferred to the experimental 349

system. We performed 17 stimulation experiments and 14 control experiments on 350

cultures between the ages of 18-21 days. Some of these experiments are not part of the 351

results presented in this paper due to low responsiveness to the 20 stimulation sites. 352

After the first 4-hour recording of spontaneous activity, there are 1.75 hours in which 353

we probe the culture in 20 different sites, repeatedly. After this probing, we do a short 354

analysis in which we pick the 3 stimulation sites which generated the most robust and 355

coherent responses, then we continue the protocol as shown in Fig 5. In some of the 356

cultures, there were no such responses at all; In these cases, we stopped the experiment 357

right after the probing. The percentage of experiments (stimulation and control) that 358

were completed (responded the at least 3 distinct stimulation sites robustly) is about 359

50%. 360

The decision of whether to continue an experiment after the probing stage was not 361

based on a clear-cut condition, but on evaluation based on several figures aiming to 362

evaluate the robustness of the responses. If there were less than 3 robust and distinct 363

responses, or when there were very low activity levels (low number of participating 364

electrodes), we stopped the protocol. 365

Acknowledgments 366

We thank Shimon Marom for many discussions and comments along the project. We 367

thank Noam Ziv for useful comments on the manuscript, as well as Tamar Galateanu 368

and Leonid Odesski for their technical support. OB is supported by the Israeli Science 369

Foundation (grant 1442/21) and an HFSP research grant (RGP0017/2021). 370

May 28, 2023 15/17

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 15, 2023. ; https://doi.org/10.1101/2023.05.08.539868doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.08.539868


References

1. Aksay E, Gamkrelidze G, Seung HS, Baker R, Tank DW. In vivo intracellular
recording and perturbation of persistent activity in a neural integrator. Nature
Neuroscience. 2001;4(2):184–193. doi:10.1038/84023.

2. Kim SS, Hermundstad AM, Romani S, Abbott LF, Jayaraman V. Generation of
stable heading representations in diverse visual scenes. Nature.
2019;576(7785):126–131. doi:10.1038/s41586-019-1767-1.

3. Miyashita Y, Chang HS. Neuronal correlate of pictorial short-term memory in
the primate temporal cortexYasushi Miyashita. Nature 1988 331:6151.
1988;331(6151):68–70. doi:10.1038/331068a0.

4. Brody CD, Hernández A, Zainos A, Romo R. Timing and Neural Encoding of
Somatosensory Parametric Working Memory in Macaque Prefrontal Cortex.
Cerebral Cortex November. 2003;13:1196–1207. doi:10.1093/cercor/bhg100.

5. Compte A, Brunel N, Goldman-Rakic PS, Wang XJ. Synaptic mechanisms and
network dynamics underlying spatial working memory in a cortical network
model. Cerebral Cortex. 2000;10(9):910–923. doi:10.1093/cercor/10.9.910.

6. Piet AT, Erlich JC, Kopec CD, Brody CD, Piet A, Erlich J, et al. Communicated
by Patrick Simen Rat Prefrontal Cortex Inactivations during Decision Making
Are Explained by Bistable Attractor Dynamics memory model naturally accounts
for optogenetic perturbations of FOF in the same task and correctly predicts a
memory-dur. Neural Computation. 2017;29:2861–2886. doi:10.1162/NECOa01005.

7. Khona M, Fiete IR. Attractor and integrator networks in the brain. Nature
Reviews Neuroscience. 2022;23(12):744–766. doi:10.1038/s41583-022-00642-0.

8. Avitan L, Stringer C. Not so spontaneous: Multi-dimensional representations of
behaviors and context in sensory areas. Neuron. 2022;110(19):3064–3075.
doi:10.1016/j.neuron.2022.06.019.

9. Grinvald A, Arieli A, Tsodyks M, Kenet T. Neuronal assemblies: Single cortical
neurons are obedient members of a huge orchestra. Biopolymers.
2003;68(3):422–436. doi:10.1002/BIP.10273.

10. Berkes P, Orbán G, Lengyel M, Fiser J. enhanced actin depolymerization at the
mDia1- bound barbed end. This inhibition occurs in the submillimolar range of P.
Science. 2011;331(January):83–88.

11. Avitan L, Pujic Z, Mölter J, Zhu S, Sun B, Goodhill GJ. Spontaneous and
evoked activity patterns diverge over development. eLife. 2021;10.
doi:10.7554/ELIFE.61942.

12. Raichman N, Ben-Jacob E. Identifying repeating motifs in the activation of
synchronized bursts in cultured neuronal networks. Journal of Neuroscience
Methods. 2008;170(1):96–110. doi:10.1016/j.jneumeth.2007.12.020.

13. Eytan D, Brenner N, Marom S. Selective Adaptation in Networks of Cortical
Neurons. Journal of Neuroscience. 2003;23(28):9349–9356.
doi:10.1523/JNEUROSCI.23-28-09349.2003.

14. Shahaf G, Marom S. Learning in networks of cortical neurons. Journal of
Neuroscience. 2001;21(22):8782–8788. doi:10.1523/jneurosci.21-22-08782.2001.

May 28, 2023 16/17

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 15, 2023. ; https://doi.org/10.1101/2023.05.08.539868doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.08.539868


15. Madhavan R, Chao ZC, Wagenaar DA, Bakkum DJ, Potter SM. Multi-site
stimulation quiets network-wide spontaneous bursts and enhances functional
plasticity in cultured cortical networks. Annual International Conference of the
IEEE Engineering in Medicine and Biology - Proceedings. 2006; p. 1593–1596.
doi:10.1109/IEMBS.2006.260571.

16. Wagenaar DA, Madhavan R, Pine J, Potter SM. Controlling Bursting in Cortical
Cultures with Closed-Loop Multi-Electrode Stimulation. 2005;25(3):680–688.
doi:10.1523/JNEUROSCI.4209-04.2005.

17. Kaufman M, Reinartz S, Ziv NE. Adaptation to prolonged neuromodulation in
cortical cultures : an invariable return to network synchrony. 2014; p. 1–22.

18. Sadtler PT, Quick KM, Golub MD, Chase SM, Ryu SI, Tyler-Kabara EC, et al.
Neural constraints on learning. Nature. 2014;512(7515):423–426.
doi:10.1038/nature13665.

19. Marom S, Shahaf G. Development, learning and memory in large random
networks of cortical neurons: Lessons beyond anatomy. Quarterly Reviews of
Biophysics. 2002;35(1):63–87. doi:10.1017/S0033583501003742.

May 28, 2023 17/17

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 15, 2023. ; https://doi.org/10.1101/2023.05.08.539868doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.08.539868

