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Abstract. We present a study of adiabatic tapering of a dielectric laser accelerator and the dynamics of the trapping 
process. The characteristics of the trapped electrons were studied for different initial conditions. Space-charge effects on 
the longitudinal motion were considered as well. 

Progress during the last decade in wall-plug-to-light efficiency of lasers makes them serious competitors to 
current microwave-driven accelerators for high energy physics as well as for medical applications. One of the 
aspects that makes the optical system significantly different, compared to microwave machines, is the trapping 
condition. In the case of a uniform acceleration structure operating at the speed of light, the condition for micro-
bunch trapping [1] for a given initial velocity ( incβ ) is  
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For realistic gradients ( 0 1 10 V mE G= − ), the typical value of the normalized longitudinal field   a ! eE0" / mc2  is 
much smaller than unity, as compared with the case of a conventional RF photo-injector, where typically    a ! 1  for 

10 cmλ = . Consider as an example the case of 1 mλ µ= and zero initial energy, the required gradient to capture 
sub-relativistic particles is of the order of 3 TV/m. For comparison, in the microwave regime the trapping gradient is 
 !  20MV/m, for which, evidently, the electrons become relativistic within a few wavelengths. Consequently, in the 
optical regime, there is a need for a tapered structure to maintain local phase synchronicity with the particles. 

In the framework of this paper, we present a longitudinal tapering of the structure to maximize the trapping 
efficiency. We further solve the dynamics of the trapping process with\without longitudinal space-charge effects for 
both the resonant particle and a distribution of particles. We investigate the effect of the initial phase and energy 
distribution on the trapped electrons and the latter’s characteristics. 

FIGURE 1. Schematic of a tapered booster. (left) internal radius constant, (right) external radius constant.  
 
For the numerical simulations, we adopt a configuration of a dielectric-loaded cylindrical waveguide. Adjusting 

the relative phase between the wave and the slow electrons can be done by varying the dielectric coefficient rε  
along the z axis, or by changing the radius of the waveguide. For the latter case, Fig. 1 describes two potential types 
of tapered structures, each keeping either the external or the internal radius uniform. Without significant loss of 
generality, throughout our analysis we assume that the vacuum tunnel's radius (internal radius) is constant, and only 
single mode operation is considered. Also, since we are interested not only in the effect of the field on the electrons, 
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but also vice-versa, the relation between the interaction impedance and the phase velocity should be determined 
locally (adiabatic tapering). 

ADIABATIC TAPERING 

The first step is to evaluate the relationship between the interaction impedance and the structure's dimensions to 
the phase velocity of the wave which is synchronous with the (resonant) particle. Note that, while our calculation 
here represents a specific geometry, a similar assessment can be made numerically for a more complex structure.  
For single-mode operation with an internal radius intR , the external radius extR  is set by solving the dispersion 
relation for the first accelerating mode, for each phβ  along the waveguide. Defining  

 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
0 int 0 int 0 ext 0 ext 0 int

1 int 1 int 0 ext 0 ext 1 int

T R J R Y R J R Y R

T R J R Y R J R Y R

κ κ κ κ κ
κ κ κ κ κ

≡ −

≡ −
 , (2) 

where nJ   and nY  are the  Bessel function of the first and second kind, respectively, and 2
phr cκ ω ε β −= −  is the 

transverse wavenumber in the dielectric. Further, introducing the function ( ) ( )12cI x I x x≡ , where 1I  is the 
modified Bessel function of the first kind, we get the dispersion relation  

 ( ) ( ) ( ) ( )0 int 1 int int int 0 int0.5 0r cI R T R R I R T Rε κ κ κΓ − Γ = . (3) 

In (3), 2
ph 1 cω β −Γ = − is the transverse wavenumber in the vacuum.  Once the geometry is determined, we can 

establish the dependence of the interaction impedance ( )intZ  on the phase velocity and the electron beam radius bR . 

Figure 2 reveals this relation for sub-relativistic electrons in an accelerating field driven by an IR laser ( )1 mλ µ= . 
The design is for an initial electron energy of 40 keV, which would correspond to ph 0.373β = , and a final energy of 

10 MeV (  ! out ! 20.6 ). Obviously, we tacitly assume adiabatic tapering and no additional modes are excited when 
varying the geometry. 

FIGURE 2. Interaction impedance as a function of the phase velocity for 1 mλ µ= drive laser wavelength, which 
co-propagates with the electron beam. The latter's radius is b int0.1R R= , whereas the cylindrical vacuum tunnel is

int 0.3R λ= . The structure's length is 0.3L mm=  and the dielectric loading is made from silicon with 11.68rε = . 
 
This longitudinal tapering of the DLA accelerator is, in practice, a variation of the axial wavenumber 
( ) ( )phk z c zω β⎡ ⎤≡ ⎣ ⎦  as a function of the location of the resonant particle ( ) ( )ph rz zβ β=  . Evidently, the local 

phase velocity needs to be synchronous with the local velocity of the resonant particle.  We previously tapered the 
wavenumber for a constant amplitude [2], and, thus, the next step would be to taper the amplitude as well. The 
longitudinal accelerating field for a traveling-wave accelerator would then be of the form 

 ( ) ( ) ( ) ( )0
0

, cos 0 ' '
z

zE z t E z t dz k zχ ω
⎡ ⎤

= + −⎢ ⎥
⎣ ⎦

∫  , (4) 

where ( )0χ  is the initial phase.  
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DYNAMICS IGNORING THE SPACE-CHARGE EFFECT 

In order to derive the differential equations of the particle motion, let us assume the existence of an infinitely 
strong magnetic field, which allows us to ignore the radial dynamics of the beam. Secondly, it is assumed that the 
radius of the vacuum tunnel ( )intR  is constant, and only single-mode operation is considered. Thirdly, since we are 
interested not only in the effect of the field on the electrons, but also vice-versa, it is assumed that the relation 
between interaction impedance and the phase velocity is known from the previous section, and is determined locally 
(adiabatic tapering).  

With these assumptions in mind, we formulate the interaction dynamics between a wave and an ensemble of N
particles. It is assumed that the distribution of the ensemble in one period of the wave is known.  The phase of the i-
th particle iχ  is relative to the wave, its energy is iγ , and its radial location is ir . In a uniform structure, given 
initial conditions ( , , , )i i ir aγ χ  and assuming no reflected electrons, the dynamics along the interaction space 

/zζ λ≡  is described by  
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 , (5) 

where ( ) ( )2 2
0 ph int ph/ , /a eE mc eIZ mcλ α β β= =  and the current is elI eN c λ= . ... is the average of all the 

particles 1,2..i N= in the ensemble. In the case of a tapered structure, we define /b a α= , which implies that 

energy  ( 2 2i bγ + ) is conserved. Then, the dynamic is described by 
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 . (6) 

In order to determine how the structure should vary in space, we assume that all the charge concentrates in one 
micro-particle we shall refer to as the resonant-particle, whose local velocity establishes by the synchronization 
condition, the phase velocity dependence on the longitudinal coordinate. For the sake of keeping a particle in 
resonance with the wave along the entire structure, the former should retain a constant acceleration phase rχ π=  
with the latter, i.e. r 0d dχ ζ = . 

FIGURE 3. The resonant particle phase velocity dependence on the longitudinal coordinate /z z L=  for the same parameters 
as in Fig. 2. 
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Indicated by subscript r, Eqs. (6) for the resonant particle on axis, r 0r = , are reduced to ( )r ph= ,db dζ α β−  

( )r ph r=d d bγ ζ α β . The solution for ( )phβ ζ is shown in Fig. 3; we assume an adiabatic taper, and indeed the 

major change is over the first 20% of the structure.  
Next, we solve the dynamics (Eq. (6)) for 360 particles which are distributed  uniformly in energy and phase 

over the range [ ]in in,γ δγ γ δγ− + and [ ],π δχ π δχ− + respectively. Each particle has an energy ini iγ γ δγ= ± , phase 

i iχ π δχ= ± , and radial location [ ]0,i br R∈ . Figure 4 describes the phase space dynamics along the travel distance 

/z z L= for 3
in10 , 0.05δγ γ δχ π−= = . 

FIGURE 4. Phase space dynamics of 360 electrons with a uniform distribution of 3
in10 , 0.05δγ γ δχ π−= =  along 

their travel distance z z L≡ . The resonant particle is highlighted in green.  
 
In Fig. 4(a) to (d), the propagation through the first 0.3% to 5% of the waveguide is described in red, and for 

reference, the initial distribution of the phase space is described in blue. As one can see, most of the dynamics occur 
over the first 20λ of the waveguide (total length is 300L λ= ). The first change is in the energy spread (Fig. 4(a)), 
and then also in the phase (Fig. 4(b)). After 10% of the waveguide, there is a clear distinction to the two separate 
groups, the accelerated and the decelerated bunches, as shown in blue in Fig. 4(e). From that point and on, the 
accelerated bunch continues to gain energy, whereas the decelerated electrons  remain behind and can be found in all 
phases from 0 to 2π . At the exit of the waveguide, the accelerated bunch reaches the energy that the structure was 
designed for (10 MeV), as shown in Fig. 4(f). In all parts of the figure, the resonant particle ( )r r,γ χ π=  is 
highlighted in green.  

 
With this dynamic in mind, the question is how many electrons are trapped, and what is their final energy spread. 

The trapping criterion was set to be a final electron kinetic energy that is higher than 80% of the resonant particle 
energy for which the structure was designed, i.e. ( )out,i out1 0.8 1γ γ− > − . To answer this question, we consider the 

initial uniform phase distribution of 0.05δχ π= , and a range of initial energy spread inγΔ . Figure 5 shows the 
trapped fraction of the electrons (in blue) and final energy spread outγΔ (in red) for each initial condition. As the 
initial energy spread is smaller, more electrons are trapped, and their final energy spread is smaller.  
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At the other extreme, when the initial energy spread is higher, less particles are trapped, and the variation in the 
latter's final energy spread is higher. Nevertheless, the final energy spread of the trapped particles does not change 
significantly! 

FIGURE 5. Fraction of trapped electrons and their final energy spread, for different values of initial energy spread. 

LONGITUDINAL SPACE CHARGE 

For an assessment of the longitudinal space-charge effect, the energy equation takes the form (Chapter 6 in [1]) 

  ( ) ( )'
0 '

int

d 1= I exp c.c.
d 2

ijL
i i sc ii

Ib r j e j
R

χλγ α ξ χ
ζ

−
⎡ ⎤⎛ ⎞⋅

− Γ − +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 , (7) 

where 2
0 /I Ie mcη= is the normalized current, 0 377η = Ω  is the wave impedance, the normalized space charge 

(SC) coefficient for cylindrical waveguide is ( ) ( )2 1
int int/ /sc sc bR R R cξ ξ πω −= , the SC coefficient is  

( ) ( )
2

1 int 1
1

1
N

sc s b s s
s
J p R R J pξ

=

= − Δ⎡ ⎤⎣ ⎦∑ , ( )22
int /s sp R cωΔ = − , and sp are the zeros of the Bessel function of the 

first kind.  When the SC effect is included, less electrons were accelerated (63%), as compared with the case where 
the SC is ignored (73%). However, the difference diminishes for larger radii of the e-beam.  

SUMMARY 

We presented a complete formulation of the dynamics of sub-relativistic electrons in an adiabatically tapered 
laser-based acceleration structure, addressing the beam-loading effect. Next, we investigated the trapping process of 
both the resonant particle, as well as a distribution of particles, and the energy spread of the trapped electrons. 
Finally, when accounting for longitudinal space-charge forces, the percentage of trapped electrons decreases.  
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